Mas de teleinformatica...

para los que quieren aprender y copiar algo mas... xD





1. Radio propagacion (reflexion, difragacion, refraccion, dispercion)
2. Señales.
3. Espectro electromagnetico.
4. Espectro doppler.
5. Acordes de impedancia.
6. Tecnicas de modulacion y multiplexacion.
7. IEEE 802.11.


solucion.

1. Una onda de radio se distingue de una radiación luminosa por su frecuencia: algunas decenas de kiloherz o gigahertz para la primera, algunos centenares de térahertz para el segundo. Obviamente la influencia de la frecuencia de la onda es determinante para su propagación pero la mayoría de los fenómenos de la óptica geométrica (por ejemplo, la reflexión) se aplican también en la propagación de las ondas hertzianas.

En la práctica es frecuente que dos o varios fenómenos se apliquen simultáneamente al trayecto de una onda: reflexión y difusión, difusión y refracción... Estos fenómenos aplicados a las ondas radioeléctricas permiten a menudo establecer conexiones entre puntos que no están en vista directa.









Reflexión: Es el cambio de dirección de un rayo o una onda que ocurre en la superficie de separación entre dos medios, de tal forma que regresa al medio inicial. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua.





Difracción: fenómeno característico de las ondas que consiste en la dispersión y curvado aparente de las ondas cuando encuentran un obstáculo. La difracción ocurre en todo tipo de ondas, desde ondas sonoras, ondas en la superficie de un fluido y ondas electromagnéticas como la luz y las ondas de radio. También sucede cuando un grupo de ondas de tamaño finito se propaga; por ejemplo, por causa de la difracción, un haz angosto de ondas de luz de un láser deben finalmente divergir en un rayo más amplio a una distancia suficiente del emisor.
Se produce cuando la longitud de onda es mayor que las dimensiones del objeto, por tanto, los efectos de la difracción disminuyen hasta hacerse indetectables a medida que el tamaño del objeto aumenta comparado con la longitud de onda.




Refracción: es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad que experimenta la onda. El índice de refracción es precisamente la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio de que se trate.
Un ejemplo de este fenómeno se ve cuando se sumerge un lápiz en un vaso con agua: el lápiz parece quebrado. También se produce refracción cuando la luz atraviesa capas de aire a distinta temperatura, de la que depende el índice de refracción. Los espejismos son producidos por un caso extremo de refracción, denominado reflexión total.




Dispersion: se denomina dispersión al fenómeno de separación de las ondas de distinta frecuencia al atravesar un material. Todos los medios materiales son más o menos dispersivos, y la dispersión afecta a todas las ondas; por ejemplo, a las ondas sonoras que se desplazan a través de la atmósfera, a las ondas de radio que atraviesan el espacio interestelar o a la luz que atraviesa el agua, el vidrio o el aire.
Se habla de dispersión, en términos generales, como el estado de un sólido o de un gas cuando contienen otro cuerpo uniformemente repartido en su masa (equivalente a la noción de disolución, que concierne a los líquidos).





2. Señales.




señal digital es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada (véase circuito de conmutación).
Los sistemas digitales, como por ejemplo el ordenador, usan lógica de dos estados representados por dos niveles de tensión eléctrica, uno alto, H y otro bajo, L (de High y Low, respectivamente, en inglés). Por abstracción, dichos estados se sustituyen por ceros y unos, lo que facilita la aplicación de la lógica y la aritmética binaria. Si el nivel alto se representa por 1 y el bajo por 0, se habla de lógica positiva y en caso contrario de lógica negativa.

señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc. La magnitud también puede ser cualquier objeto medible como los beneficios o pérdidas de un negocio.
En la naturaleza, el conjunto de señales que percibimos son analógicas, así la luz, el sonido, la energía etc, son señales que tienen una variación continua. Incluso la descomposición de la luz en el arcoiris vemos como se realiza de una forma suave y continúa.
Una onda senoidal es una señal analógica de una sola frecuencia. Los voltajes de la voz y del video son señales analógicas que varían de acuerdo con el sonido o variaciones de la luz que corresponden a la información que se está transmitiendo.


3. Espectro electromagnético: a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre éste, como la longitud de onda, la frecuencia y la intensidad de la radiación.
El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo (véase Cosmología física) aunque formalmente el espectro electromagnético es infinito y continuo.






4. efecto Doppler: el nombre de Austria físico Christian Doppler que propuso en 1842, es el cambio en la frecuencia de una onda para un observador en movimiento relativo a la fuente de las olas. Es comúnmente un vehículo, cuando escuchó un sonido de sirena enfoques, retrocede y pasa de un observador. El aumento de la frecuencia es recibida (en comparación con la emisión de frecuencia) durante el enfoque, que es idéntico en el instante de pasar por, y se disminuyó durante la recesión.
Por las ondas que se propagan en un medio, como el sonido olas, la velocidad del observador y de la fuente son relativos al medio en el que se transmiten las ondas. El total de efecto Doppler puede resultar de movimiento de la fuente, el movimiento del observador, o el movimiento del medio. Cada uno de estos efectos, se analiza por separado. Por las ondas que no requieren un medio, como la luz o la gravedad en la relatividad especial, sólo la diferencia de velocidad relativa entre el observador y la fuente debe ser considerado.





5.Impedancia:


6. Modulación: engloba el conjunto de técnicas para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea, protegiéndola de posibles interferencias y ruidos.
Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir.


Dependiendo del parámetro sobre el que se actúe, tenemos los distintos tipos de modulación:

Modulación en doble banda lateral (DSB): es una modulación lineal que consiste en modificar la amplitud de la señal portadora en función de las variaciones de la señal de información o moduladora. La modulación en doble banda lateral equivale a una modulación AM, pero sin reinserción de la portadora.

Modulación de amplitud (AM): es un tipo de modulación lineal que consiste en hacer variar la amplitud de la onda portadora de forma que esta cambie de acuerdo con las variaciones de nivel de la señal moduladora, que es la información que se va a transmitir.
AM es el acrónimo de Amplitude Modulation (Amplitud modulada), la cual consiste en modificar la amplitud de una señal de alta frecuencia, denominada portadora, en función de una señal de baja frecuencia, denominada moduladora, la cual es al señal que contiene la información que se desea transmitir. Entre los tipos de modulación AM se encuentra la modulación de doble banda lateral con portadora (DSBFC).


• Modulación de fase (PM): Es el caso de modulación donde tanto las señales de transmisión como las señales de datos pueden ser analógicas o digitales. Es un tipo de modulación exponencial al igual que la modulación de frecuencia. Se caracteriza porque la fase de la onda portadora varía directamente de acuerdo con la señal modulante, resultando una señal de modulación en fase.
La modulación de fase no suele ser muy utilizada porque se requiere equipos de recepción más complejos que las señales moduladas en frecuencia.

• Modulación de frecuencia (FM): modulación de frecuencia es una modulación angular que transmite información a través de una onda portadora variando su frecuencia (contrastando esta con la amplitud modulada o modulación de amplitud (AM), en donde la amplitud de la onda es variada mientras que su frecuencia se mantiene constante). En aplicaciones analógicas, la frecuencia instantánea de la señal modulada es proporcional al valor instantáneo de la señal moduladora. Datos digitales pueden ser enviados por el desplazamiento de la onda de frecuencia entre un conjunto de valores discretos, una modulación conocida como FSK.

• Modulación banda lateral única (SSB, ó BLU): La banda lateral unica es muy importante para el ramo de la electronica basica ya que permite transmitir señales de radio frecuencia que otras modulaciones no pueden transmitir

En la transmisión en Amplitud Modulada se gasta la mitad de la energía en transmitir una onda de frecuencia constante llamada portadora, y sólo un cuarto en transmitir la información de la señal moduladora (normalmente voz) en una banda de frecuencias por encima de la portadora. El otro cuarto se consume en transmitir exactamente la misma información, pero en una banda de frecuencias por debajo de la portadora.

• Modulación de banda lateral vestigial (VSB, VSB-AM, ó BLV): es una modulación lineal que consiste en filtrar parcialmente una de las dos bandas laterales resultantes de una modulación en doble banda lateral o de una modulación AM.
Esta modulación se utiliza en la transmisión de la componente de luminancia en los sistemas PAL, SECAM y NTSC de televisión analógica. La banda lateral que es parcialmente filtrada constituye un vestigio de la banda lateral original y porta habitualmente del 5% al 10% de la potencia total transmitida, mejorando la relación señal a ruido en las bajas frecuencias de la señal moduladora.
Las principales ventajas de este sistema son:
-Ocupa menor ancho de banda que la modulación en AM
-Puede ser demodulada usando demoduladores síncronos de AM

• Modulación de amplitud en cuadratura (QAM): es una técnica de modulación digital avanzada que transporta datos, técnica en la cual la informacion va a ser modulada tanto en amplitud como en fase (la señal de portadora va a ser modificada en amplitud y fase) o sea que la informacion digital está contenida, tanto en la amplitud como en la fase de la portadora trasmitida. Esto se consigue modulando una misma portadora, desfasando 90º la fase y la amplitud.

• Modulación por división ortogonal de frecuencia (OFDM), es una modulación que consiste en enviar un conjunto de ondas portadoras de diferentes frecuencias donde cada una transporta información la cual es modulada en QAM o en PSK.'

• Modulación por longitud de onda :) En tiempo real de simulación es un sistema de modulación de longitud de onda, utilizado en algunas aplicaciones de espectrometría atómica y molecular. Mide la amplitud del espectro de picos,(cresta a cresta o valle a valle de la onda) que se superponen a la interferencia y la inestabilidad de la radiación de fondo. La modulación por longitud de onda utiliza un sistema modulador de longitud de onda que varía la longitud de onda de observación en forma periódica.


• Modulación en anillo: es una señal de procesamiento de efectos en la electrónica, en relación con modulación de amplitud o frecuencia mixta. Es realizada por la multiplicación de dos señales, donde una es típicamente una onda sinusoidal u otra forma de onda simple. Es denominada de modulación "anillo" porque el circuito análogo de diodos utilizado inicialmente para aplicar esta técnica tomó forma de anillo.


Multiplexacion

En las telecomunicaciones se usa la multiplexación para dividir las señales en el medio por el que vayan a viajar dentro del espectro radioeléctrico. El término es equivalente al control de acceso al medio.
De esta manera, para transmitir los canales de televisión por aire, vamos a tener un ancho de frecuencia x, el cual habrá que multiplexar para que entren la mayor cantidad posible de canales de tv. Entonces se dividen los canales en un ancho de banda de 6Mhz (en gran parte de Europa y Latinoamérica, mientras que en otros países o regiones el ancho de banda es de 8 Mhz). En este caso se utiliza una multiplexación por división de frecuencia FDM..

Multiplexación en los protocolos de la capa de transporte en el Modelo OSI:
Multiplexar un paquete de datos, significa tomar los datos de la capa de aplicación, etiquetarlos con un número de puerto (TCP o UDP) que identifica a la aplicación emisora, y enviar dicho paquete a la capa de red.



7.IEEE802.11

El estándar IEEE 802.11 o Wi-Fi de IEEE que define el uso de los dos niveles inferiores de la arquitectura OSI (capas física y de enlace de datos), especificando sus normas de funcionamiento en una WLAN. Los protocolos de la rama 802.x definen la tecnología de redes de área local y redes de área metropolitana.
Sus protocolos son:

• 802.11 legacy: La versión original del estándar IEEE 802.11 publicada en 1997 especifica dos velocidades de transmisión teóricas de 1 y 2 megabits por segundo (Mbit/s) que se transmiten por señales infrarrojas (IR). IR sigue siendo parte del estándar, si bien no hay implementaciones disponibles.

• 802.11a: El estándar 802.11a utiliza el mismo juego de protocolos de base que el estándar original, opera en la banda de 5 Ghz y utiliza 52 subportadoras orthogonal frequency-division multiplexing (OFDM) con una velocidad máxima de 108 Mbit/s, lo que lo hace un estándar práctico para redes inalámbricas con velocidades reales de aproximadamente 20 Mbit/s. La velocidad de datos se reduce a 48, 36, 24, 18, 12, 9 o 6 Mbit/s en caso necesario. 802.11a tiene 12 canales no solapados, 8 para red inalámbrica y 4 para conexiones punto a punto. No puede interoperar con equipos del estándar 802.11b, excepto si se dispone de equipos que implementen ambos estándares.

• 802.11b: La revisión 802.11b del estándar original fue ratificada en 1999. 802.11b tiene una velocidad máxima de transmisión de 11 Mbit/s y utiliza el mismo método de acceso CSMA/CA definido en el estándar original. El estándar 802.11b funciona en la banda de 2.4 GHz. Debido al espacio ocupado por la codificación del protocolo CSMA/CA, en la práctica, la velocidad máxima de transmisión con este estándar es de aproximadamente 5.9 Mbit/s sobre TCP y 7.1 Mbit/s sobre UDP.

• 802.11c: Es menos usado que los primeros dos, pero por la implementación que este protocolo refleja. El protocolo ‘c’ es utilizado para la comunicación de dos redes distintas o de diferentes tipos, así como puede ser tanto conectar dos edificios distantes el uno con el otro, así como conectar dos redes de diferente tipo a través de una conexión inalámbrica. El protocolo ‘c’ es más utilizado diariamente, debido al costo que implica las largas distancias de instalación con fibra óptica, que aunque más fidedigna, resulta más costosa tanto en instrumentos monetarios como en tiempo de instalación.

• 802.11d: Es un complemento del estándar 802.11 que está pensado para permitir el uso internacional de las redes 802.11 locales. Permite que distintos dispositivos intercambien información en rangos de frecuencia según lo que se permite en el país de origen del dispositivo.

• 802.11e: Con el estándar 802.11, la tecnología IEEE 802.11 soporta tráfico en tiempo real en todo tipo de entornos y situaciones. Las aplicaciones en tiempo real son ahora una realidad por las garantías de Calidad de Servicio (QoS) proporcionado por el 802.11e. El objetivo del nuevo estándar 802.11e es introducir nuevos mecanismos a nivel de capa MAC para soportar los servicios que requieren garantías de Calidad de Servicio. Para cumplir con su objetivo IEEE 802.11e introduce un nuevo elemento llamado Hybrid Coordination Function (HCF) con dos tipos de acceso: (HCCA) Controlled Access, (EDCA) Enhanced Distributed Channel Access

• 802.11f: Es una recomendación para proveedores de puntos de acceso que permite que los productos sean más compatibles. Utiliza el protocolo IAPP que le permite a un usuario itinerante cambiarse claramente de un punto de acceso a otro mientras está en movimiento sin importar qué marcas de puntos de acceso se usan en la infraestructura de la red. También se conoce a esta propiedad simplemente como itinerancia.

• 802.11g: Este utiliza la banda de 2.4 Ghz (al igual que el estándar 802.11b) pero opera a una velocidad teórica máxima de 54 Mbit/s, que en promedio es de 22.0 Mbit/s de velocidad real de transferencia, similar a la del estándar 802.11a. Es compatible con el estándar b y utiliza las mismas frecuencias. Buena parte del proceso de diseño del estándar lo tomó el hacer compatibles los dos estándares. Sin embargo, en redes bajo el estándar g la presencia de nodos bajo el estándar b reduce significativamente la velocidad de transmisión.

• 802.11h: La especificación 802.11h es una modificación sobre el estándar 802.11 para WLAN desarrollado por el grupo de trabajo 11 del comité de estándares LAN/MAN del IEEE (IEEE 802) y que se hizo público en octubre de 2003. 802.11h intenta resolver problemas derivados de la coexistencia de las redes 802.11 con sistemas de Radares y Satélite
El desarrollo del 802.11h sigue unas recomendaciones hechas por la ITU que fueron motivadas principalmente a raíz de los requerimientos que la Oficina Europea de Radiocomunicaciones (ERO) estimó convenientes para minimizar el impacto de abrir la banda de 5 GHz, utilizada generalmente por sistemas militares, a aplicaciones ISM (ECC/DEC/(04)08).
Con el fin de respetar estos requerimientos, 802.11h proporciona a las redes 802.11a la capacidad de gestionar dinámicamente tanto la frecuencia, como la potencia de transmisión.

• 802.11i: Está dirigido a batir la vulnerabilidad actual en la seguridad para protocolos de autenticación y de codificación. El estándar abarca los protocolos 802.1x, TKIP (Protocolo de Claves Integra – Seguras – Temporales), y AES (Estándar de Cifrado Avanzado). Se implementa en WPA2.

• 802.11j: Es para la regulación japonesa lo que el 802.11h es para la regulación europea.

• 802.11k: Permite a los conmutadores y puntos de acceso inalámbricos calcular y valorar los recursos de radiofrecuencia de los clientes de una red WLAN, mejorando así su gestión. Está diseñado para ser implementado en software, para soportarlo el equipamiento WLAN sólo requiere ser actualizado. Y, como es lógico, para que el estándar sea efectivo, han de ser compatibles tanto los clientes (adaptadores y tarjetas WLAN) como la infraestructura (puntos de acceso y conmutadores WLAN). +

• 802.11n: IEEE anunció la formación de un grupo de trabajo 802.11 (Tgn) para desarrollar una nueva revisión del estándar 802.11. La velocidad real de transmisión podría llegar a los 600 Mbps (lo que significa que las velocidades teóricas de transmisión serían aún mayores), y debería ser hasta 10 veces más rápida que una red bajo los estándares 802.11a y 802.11g, y cerca de 40 veces más rápida que una red bajo el estándar 802.11b. También se espera que el alcance de operación de las redes sea mayor con este nuevo estándar gracias a la tecnología MIMO Multiple Input – Multiple Output, que permite utilizar varios canales a la vez para enviar y recibir datos gracias a la incorporación de varias antenas (3). Existen también otras propuestas alternativas que podrán ser consideradas y se espera que el estándar que debía ser completado hacia finales de 2006, se implante hacia 2008. A diferencia de las otras versiones de Wi-Fi, 802.11n puede trabajar en dos bandas de frecuencias: 2,4 GHz (la que emplean 802.11b y 802.11g) y 5 GHz (la que usa 802.11a). Gracias a ello, 802.11n es compatible con dispositivos basados en todas las ediciones anteriores de Wi-Fi. Además, es útil que trabaje en la banda de 5 GHz, ya que está menos congestionada y en 802.11n permite alcanzar un mayor rendimiento.

• 802.11p: Este estándar opera en el espectro de frecuencias de 5.9 GHz, especialmente indicado para automóviles. Será la base de las comunicaciones dedicadas de corto alcance (DSRC) en Norteamérica. La tecnología DSRC permitirá el intercambio de datos entre vehículos y entre automóviles e infraestructuras en carretera.

• 802.11r: También se conoce como Fast Basic Service Set Transition, y su principal característica es permitir a la red que establezca los protocolos de seguridad que identifican a un dispositivo en el nuevo punto de acceso antes de que abandone el actual y se pase a él. Esta función, que una vez enunciada parece obvia e indispensable en un sistema de datos inalámbricos, permite que la transición entre nodos demore menos de 50 milisegundos. Un lapso de tiempo de esa magnitud es lo suficientemente corto como para mantener una comunicación vía VoIP sin que haya cortes perceptibles.

• 802.11s: Define la interoperabilidad de fabricantes en cuanto a protocolos Mesh (son aquellas redes en las que se mezclan las dos topologías de las redes inalámbricas, la topología Ad-hoc y la topología infraestructura.). Bien es sabido que no existe un estándar, y que por eso cada fabricante tiene sus propios mecanismos de generación de mallas.

• 802.11w: Todavía no concluido. TGw está trabajando en mejorar la capa del control de acceso del medio de IEEE 802.11 para aumentar la seguridad de los protocolos de autenticación y codificación. Las LANs inalámbricas envía la información del sistema en tramas desprotegidos, que los hace vulnerables. Este estándar podra proteger las redes contra la interrupción causada por los sistemas malévolos que crean peticiones desasociadas que parecen ser enviadas por el equipo válido. Se intenta extender la protección que aporta el estándar 802.11i más allá de los datos hasta las tramas de gestión, responsables de las principales operaciones de una red. Estas extensiones tendrán interacciones con IEEE 802.11r e IEEE 802.11u.






1 comentarios:

hola mi amiguito lokito espero que sigas metiendole cositas interesantes al blog.. esta superrrr t.k-

Publicar un comentario